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1. INTRODUCTION

The purpose of this work is to describe a straightforward geometrical construction
that approximates the mapping of solar magnetic fields through the corona to inter-
planetary space. The construction is based conceptually on the source-surface model
introduced by Schatten et al. (1969) and by Altschuler and Newkirk (1969). The source
surface in their models is a sphere of radius = 1.6-2.5 P (solar radii) on which the
scalar potential V (from which B=-0¥ is derived for r = rs) is made constant. This

constraint has the effect of making ngadial at r =r_. The field outside the source sur-

s
face in their models is generated from the spiral-field construction of Parker (1958) by

imposing the continuity of &at P

The traditional source-surface models (Schatten M., 1969; Altschuler and
Newkirk, 1969) are computationally very simple and yield a qualitatively pleasing
reproduction of major heliomagnetic features such as helmet streamers, filaments,
arcades of closed field lines, and coronal holes. However, these models are only
approximations to a rigorous magnetohydrodynamic (MHD) solution of the interaction
between the solar wind and the coronal magnetic field. The inaccuracy inherent in these
models prevents a detailed comparison of magnetic structures in the outer corona and
solar wind with observed magnetic field patterns in the photosphere. The major
weakness in these models is the incompatibility of the postulated radial magnetic field
with MHD atr <10r o This weakness is well illustrated by comparison with the only
existing MHD solution (Pneuman and Kopp, 1971a,b), which was obtained for the special

case in which the normal component of the photospheric field is that of a dipole field




with a polar field strength of 1 G. In Figure 1 the usual source-surface solution for this
case is compared with the MHD sol. ion. The differences are quite obvious. The MHD
field lines are not even approximately radial for r > R 2.5 g and the choice of a

smaller source surface would make the disagreement even worse.

There have been subsequent attemipts to replace the source-surface models by
models which represent the MHD effects more accurately. Schatten (1971) developed an
analytical technique that was based on the idea of placing sheet currents between
oppositely directed open field lines. The resulting construction produced a qualitative
improvement, in that the open field lines were indeed deflected equatorward instead of
being radial; however, field lines in the region near the cusps of helmet streamers were
poorly modelled thereby. (In order to model well the direction of the open field lines, the
cusps had to be placed unrealistically low, i.ﬁ, at 1.6r 5 in the dipole case.) Yeh and
Pneuman (1977) developed a much more rigorous sheet-current model in which the
location and strengths of current sheets between oppositely directed open field lines (and
between closed and open structures) are actually calculated iteratively by determining
the force balance between the magnetic field and the gas pressure in the expanding
corona. Their result was shown to be very accurate when compared with the MHD dipole
solution, but the calculation was so lengthy that it appears impractical to generalize
their scheme to the point of applying it to a set of observed photospheric magnetic

fields.

In the present work we develop a construction that retains most of the compu-
tational simplicity of the earlier source-surface models but which significantly improves

the agreement with the MHD solution in the dipole case. We do this by adopting an
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Fig. 1.

Configuration of Magnetic Field Lines Emanating from
an Internal Solar Dipole in the MHD Solution of Pneuman
and Kopp (1971a, b; dashed curves) and in the Source-
Surface Model of Altschuler and Newkirk (1969; solid
curves). The spherical source surface (dotted curve)
was taken to have a radius equal to 2.5 r,

(Altschuler and Newkirk, 1969).




appropriate non-spherical source surface on which the heliomagnetic scalar potential V is
made constant. The exterior solution is constructed in this case by mapping the outward
normal to our source surface in accordance with a generalized Parker spiral. Our choice
of a non-spherical source surface is well motivated by MHD considerations, and the field

that we generate agrees well in magnitude and direction with the one calculated by

Pneuman and Kopp (1971a,b).
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2. NONSPHERICAL SOURCE SURFACE

For our non-spherical source surface, we select an appropriate isogauss of the
spherical-harmonic extrapolation of the magnetic field derived from internal sources,
i.e., without considering the effects of currents external to the sun. The identification
of the source surface with an isogauss rather than a sphere represents a better simulation
of magnetohydrohynamic (MHD) behavior. One should expect the magnetic field to be
distorted very little by plasma currents where B is large, but very much where B is small.
Thus, the influence of the solar dipole should be relatively less perturbed by plasma
currents at polar latitudes than at equatorial, for observers stationed at the same

heliocentric distance.

We do not attempt to specify the source surface self-consistently, e.g., ty
including the effects of external currents on B, and therefore on the shape of the
critical isogauss. We are not attempting here to solve a problem in MHD rigorously, but
are instead trying to formulate a straightforward geometrical construction. The
accuracy of our construction is easily tested by comparing our results with an MHD

solution, and our model is amply vindicated by such a comparison.

After the non-spherical source surface rs( @, ¢) is identified from the spherical-
harmonic expansion deduced from the observed photospheric magnetic field, the coronal
field interior to the source surface is derived under the assumption that this volume is

current-free. The coronal E“field there is calculated from a scalar potential of the form

«l]e

|
1




N n
¥ = p (r /r)n+1 (gm cos m¢ +h™ sin me ) P™(0)
o ) n n n
n=1 m=0
+ (1‘0/1'@)(!'/1'0)n (Eg' cos my +T1!T sin mg ) P: ()], (1)

where T is a (constant) radius representative of the non-spherical source surface. In the
dipole solution that follows, the parameter Ty is the equatorial radius of the source
surface. In a general solution, Ty is merely a parameter that conveniently represents the
particular isogauss level that is chosen. For example, one might identify the critical

isogauss either by specifying B0 (the value of i‘l}“!'on the surface) or by specifying

as a general definition clearly consistent with (and, indeed, motivated by) the dipole

case. The coefficients gg’ and th are (of course) already determined from the spherical-
harmonic expansion deduced from observations of photospheric field (e.g., Altschuler et

al., 1977).

s g - M o g 3l
The coefficients g n and th are chosen so as to minimize the mean-square

tangential component of B over the source surface. This is an operational way of saying

E that B should be (as nearly as possible) normal to the source surface. This statement is a

P




straightforward generalization from the model characterized by a spherical source
surface. There are two main complications in this generalization: There is no longer a
simple relation between the g :‘ (ErT) coefficients and the ng (hrT) coefficients, and one
cannot be assured that any spherical-harmonic potential exists that makes B _normal to
the source surface over the entire area. We therefore ask only that the E:‘ and E"r:

coefficients be such as to minimize the integral

& sz%dA 3)

over the source surface, where Bt is the tangential component of E«

To obtain 'gnoutside the non-spherical source surface, we construet the outward
normal to the source surface and make the normal component of g‘continuous there.
This is an obvious generalization from the case of a spherical source surface. It should
be quite effective when the source surface has a relatively simple shape, e.g., in the
dipole case discussed in the following section. However, one may question this procedure
for more complicated source surfaces, and one must recognize that the procedure
becomes meaningless if the source surface is not everywhere convex. However, even in
such extreme cases, the solution internal to the source surface might be utilized to
prescribe a magnetic field geometry so that the hydrodynamic problem of coronal
expansion within a specified field geometry can be solved (Durney and Pneuman, 1975).
In such a case the external flow field might be obtained from hydrodynamies (rather than
MHD) by imposing the Durney-Pneuman solution as a boundary condition at the non-
spherical source surface. In essence, then, we specify a very simple extrapolation of the
field normal to the source surface but recognize that a more realistic (albeit more

complicated) solution might be necessary in practice.

1%




3. THE DIPOLE CASE

The application of our technique to the case of an internal solar dipole is very
instructive for several reasons. First, the source surface can be expressed analytically,
so as to make the least-squares minimization of (3) particularly simple. This allows us to
investigate the stability of the solution and the convergenge of the calculated 'g'g as N,
the maximum allowed order, is increased. Second, the solution is directly comparable
with the MHD dipole solution of Pneuman and Kopp (1971a,b). This comparison will be
used as the primary test of the accuracy of our technique. Finally, even such a simple
field configuration as the solar dipole already yields very instructive information about
the behavior of the interplanetary Rfield, as observed at r ~ 1 AU. Therefore, we
present the detailed solution of the solar-dipole case to illustrate the advantages of a
non-sphefical source surface. The isogauss surfaces of a dipolar magnetic field have the

general form
r = (1+3cos’e )1/6 Fos : (4)

where o is the equatorial radius and © is the colatitude. For a 1-G polar field the

choice rj = 2.5r, would correspond to a surface of constant B = | B|=0.032 G in the

]
absence of external currents. It develops (see below) that an equatorial radius ry = 23r o
provides a much better overall agreement between our model and the solution of
Pneuman and Kopp (1971a,b). We remark parenthetically that the source surface
described by (4) encloses a volume equal to 1.380173 (4 /3)rg, and that a dipolar source

surface of equatorial radius o = 2.245 r o would enclose the same volume as the spherical

source surface (of radius 2.5 r o) used by Altschuler and Newkirk (1969).

oiBe

i
|




3.1 Internal Solution

In the dipole case, which is azimuthally symmetric, the scalar potential inside

the source surface simplifies from (1) to the form

N
Vo= r g (e /n?cose + Z /e 0 P (cos 0), (5)
n=1

where the g g are expansion coefficients to be determined below and the P n(cos 8) are

0

Legendre polynomials. The term involving g, generates the field of the underlying

internal dipole. The magnetic field E\(= -V V) corresponding to (5) is given by
= s 3 - 0 g
B = an;gg (re/r) cos 6 + @ g, (r@/r)3 sin 6

N

-~ n-1=0

¥ E n (r/ro) €, P, (cos 8)
n=1

N
+ i E (r/t‘o)n-1 Eg Pn' (cos 8) sin 6 . (6)
n=1

The coefficients 'g'g are to be chosen so as to minimize o, which is the integral of
th = (ﬂf: X B)2 over the surface defined by (4), where,.r:\‘is the unit vector in the direction

of the outward normal to the source surface. In terms of (4) this means that n is the unit

vector in the direction of xro(r, 0):




ATl SN

——

A= (1+7 cos

o + 8coste)l/? [(1+3cosze)i + @sin@ cos o). (M

Thus, we seek to minimize the integral

i fodA = f(ﬁxB)ZdA (8)

L N

with respect to the g 2, where

dA = 2nrsine [r?+(dr/de)2]2 qe

2

2mrg (1+7cos"e +8 cos?8)1/2 (1 + 3 cos?0)2/3 sin 6 de (9)

is the element of area on the source surface. Since the expansion coefficients Eg in (5)

must vanish for even n in order to preserve the north-south symmetry of the B field, it
ANA

follows from (8) that
1
¢ . 4”3/ (1 +3x2)7 23 (1 + 7x% + 8x%h) /2 BZ dx, (10)
0

where x = cos 8 . Moreover, it follows from (6) and (7) that

-17-
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B, = (1+7x*+ 8xH) 12 (1 + 3x%)V2 (1 - <H1/2

x{( e/ro)s (1 +x?) g(l)

N
+ Z 1+ 5B 0N gt [nxP )+ (1 + 3x))P (0] } . (11)
n=1

We seek to minimize o with respect to each of the expansion coefficients Erg by

setting da/ BEI: = 0. There follows from this condition the requirement that

1
f 1+ 7)(2 + 8)(4)-1/2 (1+ 3x2)'5-/3 {1« x2) (1 % 3x2)(m+2)/6
0

x [mxp (x) + (1+3xDP 0] { (e /g (1 +xP) g0 (12)

N

+ Z (1+3xD) ™60y p ) + 1 +3xDP W]} ax = 0
n=1

for every odd integer m <N. Thus, one must solve a set of simultaneous linear equations
to determine the required coefficients Eg. Our requirement can be expressed more

concisely in matrix form. We require that

-18-
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N
-0, 0 ATyt 3
Z (g n/gl) Ao ® ("e/"o) Koo (13a)
n=1
where
; 1;
Rl = f (1+7x2 + 8xh)7/2 (1 + 3xD)(MN-6)/6y _ )
0
x (1 +3x% Pn'(x) + nx P (x)] 1
x [@+3xP) P ‘(0 + mxP_(x)] dx (13b)
and
1
K= [ (1 +7x% + 8xh/2 (1 + 3x2) (M=8)/6 () _ (4
0
2 ,
x [1+3x)P_'(x) + mxP_(x)] dx (13¢)
for nnm = 1,3,5,7,. . . , N=2, N. The matrix Anmiscmuw wmmﬂﬁmjfz
Anm = Aggs Therefore, one may alternatively view g 2/82 as a column vector and
express (13a) in the form
N
0.0, . _ 3
D Mo @nlEp = -/ Kpy, (14)
n=1

-19-
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where Km is considered a column vector.

The least-squares condition that determines the E: can thus be solved by standard
matrix-inversion techniques. The array Amn is very well conditioned, being nearly tri-

diagonal. Away from the three main diagonals the array values decrease by

approximately two orders of magnitude per diagonal. We have solved (14) for the Eg
with N =5,7,9,11,13,15. The results are shown in Table 1. It is quite evident from this

0

tabulation that the results are well behaved, and that the expansion coefficients g 2

converge rapidly to the values that they would acquire in the limit N — 00,
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Optimal Values of (ry/r,)’ (8°/g)) for Use in (5), as

Table 1.

Determined by Minimizing the Value of @ Specified

by (10).
n N=5 =7 N=9 N=11 N=13 N=15
1 -0.62917 -0.63124 -0.63185 L0;63205 -0.63211 -0.63213
3 +0.11960 +0.12537 +0.12716 +3.13778 +0.12795 +0.12802
S -0.03038 -0.04088 -0.04448 -0.04574' -0.04619 -0.04635
7 +0.01086 +0.01607 +0.01820 +0.01903 +0.01935
9 -0.00418 -0.00674 -0.00795 -0.00847
11 +0.00168 +0.00293 +0.00360
13 -0.00069 -0.00130

15

+0.00029




3.2 Exterior Solution

The meridional component of Batr > (1+3 cos? 9)1/ 6!‘0 in the present model
is defined by constructing the outward normal to the source surface, lLe., by construeting
a straight line parallel to the unit vector j\M specified by (7). In view of the azimuthal
symmetry of the dipole problem, it proves convenient to introduce the eylindrical
coordinates p =rsin® and z = rcos®6. Since Mt:= ~'§ sin +2Mcos 6 and

@ = p cos 8 =2zsin @, it follows from (7) that
AN

~—~

A= (1+7cos’0 +8cos?0) /2 [(1+4cos?e) p sino+ 43cos’0].  (15)

Thus, the outward normal to the source surface at colatitude © " is a straight line having

the slope

dz/dp = 4(1 + 4 cos> es)‘l cos? 8 ctn 8
and the intercepts
. PN 7
Pg =Ty (1+3cos es) sin 6

z; =r, 1+3 cos2 es)ll6 cos es.




3.3 Comparison with MHD Solution

In Figure 2, the interior and exterior solutions are joined at r = (1 + 3 c052 6)1/ 61'0
and are compared with the MHD solution. The footpoints of the field lines were chosen
to coincide with those in the figure published by Pneuman and Kopp (1971a,b). A
reasonable match to the overall configuration of field lines is achieved with ry = 2.3 Tor

The improvement of the present model, with its non-spherical source surface, over

models with spherical source surfaces can be seen by comparing Figure 2 with Figure 1.

The direction of the field lines in the exterior region is improved dramatically. Even the
shape of the field lines interior to the source surface is considerably improved. On the
basis of this test with the dipole case, one would expect the present technique not only to
allow a much more accurate comparison of observed interplanetary fields with

photospherie fields, but also to model coronal structures more faithfully.

As has been stated before, the parameter L is adjustable. It is not surprising that
our good overall fit to the MHD solution requires o = 23 r o whereas the equatorial cusp

of the MHD solution oceurs atr = 2.5 r o One could not expect our source-surface model

! to agree with the MHD solution in every detail. Thus, the construction of a realistic
coronal-field model requires a certain degree of judgment in the selection of Tos just as
the selection of a radius for the spherical source surface has required in the past. Of
course, the parameter r, can be adjusted to mateh .pecific features of the MHD solution
very well. Figure 3 illustrates two such adjustments of ro: the first to mateh the MHD
solution in the region close to the neutral sheet, and the second to provide an explicit

i a tracing of the cusped field line.

28




/]
\.oouao,o ee o
/

—
T ———— — ——
—

- D - D S D D e S e
-

\

i

..\0..
|
|
|
I
I
I
|
I
I
I
]
[

|
1

e e a—

Configuration of Magnetic Field Lines Emanating
from an Internal Solar Dipole in the MHD Solution
of Pneuman and Kopp (1971a, b; dashed curves) and
in Our Source-Surface Model (solid curves). Our
nonspherical source surface (dotted curve) is taken
to have an equatorial radius ro T 2.3 r , which
corresponds to a polar radius 21/3 rQ R 2.9 s
(cf. Fig. 1). We have taken N = 15 in (5).
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Fig. 3.

Configuration of Magnetic Field Lines Emanating from
an Internal Solar Dipole in Our Source-Surface Model
for Selected Equatorial Radii rg > 2.3 rg: (a) to Match
the Lowest-Latitude Open Field Lines Shown by Pneuman
and Kopp (1971a,b) at 3 rg Sr <S4 r , rg = 2.3380 ry;
and (b) to Ilustrate the Cusped Fiefd Line Explicitly,
rg = 2.3391 re. As in Figs. 1 and 2, the illustrated
field lines from the source-surface model were

chosen so as to intersect the sun (r = rg) at the same
set of colatitudes 8 as the MHD field lines plotted

by Pneuman and Kopp (1971a,b). We have taken

N = 15 in (5).
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; 3.4 Interplanetary Magnetic Field

2 The present model yields a calculable interplanetary magnetic field that can be
i compared with spacecraft observations. This circumstance provides a further test of the
¥ accuracy of the model and allows for instructive predictions about the overall structure
" of the interplanetary gfield. Detailed calculations are provided here for the case of an

internal dipole.

Figure 4 illustrates‘the calculation that is required. We must calculate, as a
function of heliocentric distance r, the cross-sectional area of the magnetic flux tube
that is bounded in latitude by a pair of infinitesimally separated normals to the source
surface. The flux tube in question is a figure of revolution about the z axis. By virtue of
its construction, the flux tube contains a fixed number of field lines. Thus, the product

of (a) the cross-sectional area of the flux tube, and (b) the meridional component of the

magnetic field, must remain independent of r throughout the flux tube.

The element of area transverse to the flux tube is given by dA = 27 p ds | » Where
ds L is the thickness of the flux tube at heliocentric distance r = p esc 6 . However, the
thickness dsl at (r, @, ¢) is proportional to the distance of the point (r, 6, ¢) from the
center of curvature (C) of the source surface for the point (rs, B @ S) along the same
| normal (see Figure 4). Thus, if R is the radius of curvature at (rs, es, ¢s), the value of
ds, is proportional to R+ &, where & is distance from (rs, 8y ¢ s) to (r, 8, ¢).
Therefore, the meridional component B m of Rat (r, 8, ¢) is related to the normal

) by the formula

component By of B at (r;, ©

s’ ¢S
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Fig. 4.

Geometry of Meridional Cross Section
of Magnetic Flux Tube (bounded by
solid lines that intersect at C), as
Employed in the Calculation of B at
Points (r, 0) Outside Our Nonspher-
ical Source Surface (dashed curve)
From the Normal Component

(Bs= n + B) of B at the Source Surface
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B, =(py/p) [RAR + 8)]B,

= (rg/r) (sin @ /sin ©) [1 + (5/R)] (1 +3 cos® 0 )16 B_ (18)

We calculate R as a funetion of es and obtain & and @ as functions of r and 6 s It
would have been more convenient to obtain 6 s R, and & in terms of r and 6, but this

proved intractable.

Using the eylindrical coordinates p g = f o 6 and zg =g COS O, We find that the

source surface defined by (4) satisfies the equation

(pz + zz)4 = (pg - 422) rg ' (19)

We consider z, to be a function of pg on the source surface and differentiate (19)

implieitly to obtain

3

N
]

3 2 ;
e (1 + 4 cos es) sece es sin es (20a)

O 2 6 il
2g= - (1/82) [(1+3cos”6)sec 6 sin” o

2

+ 8+ 2sec’o, + 8)7). (20b)
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The radius of curvature is thereupon given (e.g., Thomas, 1960) by
=3 " ’” —1 ’ 2 3/2
R= |z | [1+(2) ] . (21)

We note in particular that R — o at the equator (6, = 7/2) and that R =0.8 r s at the

poles.

Since zs’ is the slope of the source surface, the equation

piceg = slagle (22)

characterizes the normal to the source surface. Therefore, the normal distance & of the

point (r, 6, ¢) from the source surface is given by

s = [(p - ps)2 + (z-zs)z]l/2 = [1+(zs’)2:|1/2 Iz-zsl

[1+ @)Y (z-2)sgn(cos 8.  (23)

The remaining task is to calculate z - zg in terms of r and es. To do this we write

= 2 j 2
(p=py*p) * @@=, +2)

-
n
©
+
N
]

2
s

(p - pg? + (2-2)> + 12 +2p (p - p) + 22,(2-2 (24)
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b and eliminate (p - p s) with the aid of (22). The result is a quadratic equation in (z - )
B | that yields two solutions, one of which can be identified as extraneous because it fails to
4 reduce to z-z_ = (r- rs) sgn (cos es) atcos 6, = 1 (i.e. , at the poles). The accept-

able solution reads

4[1+ (z;)z] (z-2) =
-. {16 [1+ (z_;‘)zj(r2 - rz) + rg (1 + 3 cos? es)2 sec® 08}1/2 sgn (cos 8 )

2 3
=N (1 + 3 cos 95) sec” 0, (25)

where r = (1+ 3 cos? es)l/6 ro as usual. The substitution of (25) in (23) yields & as a

funection of r and es for fixed Cor Moreover, it follows from (23) that

cos § = (rolr) (1+3 cos2 95)1/6 cos 6

+[1+ (zs')z]'ll2 (8/r) sgn (cos 0 ) , (26)

i.e., that @ can be written explicitly as a function of r and ¢ . for fixed Coe
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We identify By in (18) with the normal component of B = - ¥V at the source
surface:

2

& 4 -1/2 2 :
B. = (1+7cos es + 8 cos es) [(1+3cos es)Br + sin 84 cos esBe] + 127)

s
In order to facilitate applications of the present model by the interested reader, we
present (in Table 2) listings of the quantity (rD/r 0)3 (Bs/gg) sec 8 as a function of cos 8¢
at the source surface for selected values of N in (5). We have selected this particular
combination of variables because of the fact that its limit remains finite (and
independent of rolr o) as one approaches the equator (6 = w/2), i.e., because
B, « (x'e/ro)3 gtl, cos 6 in this limit. The expression for B, given by (18) becomes
indeterminate at cos & = %1, i.e., at the poles. Since we find zs’ =0 and (therefore)
R =!z;’('1 =08 at cos 6 = 3:'1, the correct limit for (18) is obtained by considering a
spherical expansion from the center of curvature, which is located on the axis of

symmetry at z = 0.2 rg sgn (cos 8). Thus, we obtain

o i -2
B, =B, = 16[5(r/r) - 1] ° B (28)

at cos 8 = 1. The source-surface radius at the poles is given by rs=21/ ’ For

according to (4). Since B 0 i 8= zs' along the entire field line, it is easy enough to

reconstruct B in cylindrical (p, ¢, 2) or spherical coordinates outside the source surface:

«3f




Table 2. Values of (1'0/r.)3 (E-E/gg) sec 9. at the Nonspherical Source
Surface Given by (4), as Computed from (5,)* with the
Optimal Coefficients Eg Specified in Table 1

-
%
P cos © N=5 N=7 N= N=11 N=13 N=15
R 0.0 3.452 3.745 3.960 4.113 4.222 4.300
P 0.1 3.396 3.674 3.873 4.009 4.101 4.164
b ;
! 0.2 3.243 3.479 3.629 3.717 3.766 3.792
0.3 3.028 3.193 3.269 3.293 3.291 3.281
0.4 2.773 2.844 2.840 2.809 2.781 2.765
0.5 2.484 2.459 2.401 2.362 2.352 2.358
P 0.6 2.171 2.082 2.032 2.034 2.053 2.063
0.7 1.853 1.773 1.787 1.819 1.823 1.810
0.8 1.572 1.585 1.634 1.624 1.607 1.611
0.9 1.400 1.489 1.455 1.444 1.463 1.455
1.0 1.442 1.245 1.376 1.289 1.346 1.313

*B = f.B at the source surface.
8 o M
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n21~1/2 _.
-[1+ (zg) ] zg B, sgn (cos 6)

[1+@)*]1%B_ sgn (cos 6
g1+ (zs’_’)2 ]'1/2 (cos 6 -z, sin 8) B sgn (cos @)

- [1+ (z;)z]'ll2 (sin @ +z_ cos 8) B_ sgn (cos 6)

We assume that the sun rotates with angular velocity 2 about the dipole (z) axis and
that the solar-wind velocity u is directed along the normal to the source surface. Thus,
we neglect the azimuthal component of u while requiring that Ug /ur = B, /B, It

follows from the argument offered by Parker (1958) that
B¢ =- (rsin® - rosin ) (@ /u) B (30)

in our (more general) model. We would take € = 2.8925 X 1()-6 sec—1 in order to repro-
duce the 27-day periodicity of solar magnetic features observed from the orbiting earth
(cf. Dessler, 1967). A simple model for B 0 could be constructed by adopting the
nominal quiet-time solar-wind velocity (u = 320 km/sec) recommended by Hundhausen
(1970), but a better model would require us instead to specify the probable variation of u
with r and es. Rather than burden the present work with a model for the solar-wind
velocity, however, we shall ignore interplanetary comparisons of B‘P with that obtained

from our model and concentrate instead of Bm.
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Figure 5 illustrates the variation of B with r/re. In the left panel one follows a

field line by holding fixed the value of © . (colatitude at which the field line intersects
source surface) or, equivalently, of © » (colatitude at which the field line intersects the
surface of the sun); in this case the latitude of evaluation decreases with increasing t'/re.
In the right panel one evaluates B . at fixed latitude X = |(w/2)-8!. Thus, the left
panel illustrates a conceptual point, while the right panel illustrates an observational
one. Both panels illustrate a pronounced departure of (r/r @)2 Bm from constancy at low
latitudes, in marked contrast to the case of a spherical source surface. With a spherical
source surface (Schatten et al., 1969; Altschuler and Newkirk, 1969) one would have

obtained © = es, Be =0, and

B 3g) c2lr) cose, (31)

r 1
with rg independent of 6 s It would follow from (31) that (r/re)2 Bm’ as well as 6,
should remain constant along a field line. Moreover, it would seem from (31) that the
equatorial current sheet at © = m/2 is not a sharply defined feature. The azimuthal (¢)

component of the current density would be given by

J, = (c/4n)§-YXB  =(@c/drr) (r,/r)° g sin 0 (32)

AA AN ANAA DA

in the case of a spherical source surface. This would represent a distribution of current

having a full width of 120° (out of a possible 180°) at half maximum.
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The results of the present model (with its non-spherical source surface) stand in
sharp contrast to (31) and (32). Figure 6, for example, illustrates the variation of B,
with cos 6 atr =215 P (=1 AU), as obtained by us from (18). We find B atr~1 AU to
be nearly constant (within 10% of the polar value) over at least 85% of the unit sphere.
Our meridional component °f.§,t in contrast to that described by (31), actually passes
through a broad off-equatorial minimum at a latitude ~30° and rises to more than four
times the polar value at a latitude of approximately 0.023°%; we have magnified the scale
of the abscissa by a factor of 100 for cos & < 0.01 in order to show the region of field
reversal clearly (see Figure 6). The maxima in !Bml are separated by ~ 1.2 X 10° km at

a heliocentric distance of 1.5 X 108

km (1 AU). Such precise numerical results should
not be taken literally, since source-surface models are intended only to simulate
dynamical calculations and not to supplant them. However, we view the evolution of
such a sharply defined interplanetary current sheet as a major improvement over past

source-surface models that employed spherical source surfaces.

A final comparison between our model and that of Altschuler and Newkirk (1969)
is shown in Figure 7. Interplanetary field lines in each case have been traced from
colatitude 6 atr =215 e (=1 AU) to colatitude es at the source surface (r = rs) and to
colatitude 8, at the surface of the sun (r = ro). We selected By ™ %< To for the case of a

spherical source surface and rg=2.3 (1+3 cos’ 68)1/6

£, for the case of a non-spherical
source surface, in accordance with the examples analyzed above. We recall that 6 and
84 are equal for the case of a spherical source surface, but we note with surprise the

nearly linear relationship between © and 9 for the case of a non-spherical source

surface. Moreover, except at cos 6 = 0 and cos 8 = +1, we find that the field lines at
interplanetary latitude \ =|(w/2)-6| map to higher latitudes at r = rsand atr=rg in

our model than in the model of Altschuler and Newkirk (1969).
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Variation of Meridional Component By, of
Interplanetary Magnetic Field at Helio-
centric Distance r = 215 rg ® 1 AU with
Colatitude 6 for Nonspherical Source

Surface with Equatorial Radius rg = 2.3 rg.

Dashed curve and lower scale apply for
cos 0 2 10-2; solid curve and upper scale
apply for cos 6 < 10-2. We have taken

N = 15 in (5). The ordinate measures By,
in y(1y = 10-5 G) if one takes gq = 1 G-
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Fig. 7.

6 AT 1 AU

Results of Tracing Magnetic Field Line
from Colatitude 6 atr = 215 rg ® 1 AU
in Interplanetary Space to Colatitude 6
at the Source Surface (r = rg) and Thence
to Colatitude g at the Surface of the Sun
(r = rg). Dashed curves correspond to
the model of Altschuler and Newkirk
(1969), i.e., to a spherical source sur-
face of Radius rg = 2.5 rg. Solid
curves correspond to the present model,
i.e., to a nonspherical source surface
with equatorial radius rg = 2.3 rg. We
have taken N = 15 in (5).
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4. APPLICATION TO REALISTIC ‘1‘3“ FIELD

The obvious extension of our concept of a non-spherical source surface is to apply
it to the spherical-harmonic expansion deduced from a set of observed photospheric B-
field data. This procedure carries the promise of allowing a calculation of realistic
coronal and interplanetary magnetic fields that are accurate enough to permit a detailed
investigation of a variety of solar-interplanetary structures, e.g., neutral sheets, sectors,
high-speed streams, coronal holes, helmet streamers, and so on. In order to do this, one
must develop a numerical program to minimize o as given by (3) over an arbitrary,
azimuthally asymmetric source surface. This is a rather large and complicated task, and
is beyond the scope of the present paper. However, before such a task is started, we can
and should investigate what the shape of a realistic source surface (as determined by the
procedure outlined in Section 2) would be. Accordingly, we have obtained from
R. H. Levine (personal communication, 1977) a set of spherical-harmonic expansion
coefficients (gg‘ and hnm fromn=1ton=20, m=0 tom=n) for use in (1) for two well-
studied solar rotations (1602 and 1609). We have used these coefficients to calculate
several isogauss surfaces. For purposes of illustration we have adopted the isogauss
IE'} = 0.03 G as the hypothetical source surface. In accordance with the present pre-
scription, the coefficients Er: and E'T in (1) have been neglected in calculating the

isogauss.

The results are shown in Figure 8 in the form of synoptic contour plots of constant

rs/ro. The actual shape of the isogauss surface for rotation 1602 can be seen more

clearly in Figure 9, where two meridional cuts through the surface are shown. The
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180°
(b)

Contours of Constant (specified) rg/ry on the

Isogaussian ''Source' Surface |B| = 0.3 G for
Rotations 1602 (a) and 1609 (b), Based on (1)

with (gn’, h’) Supplied by R.H. Levine (per-
sonal communication, 1977) and (2) with

(g, hI) Neglected
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particular longitudes of the cuts were chosen so as to display the largest possible
variations of rs/r - with latitude. In general, the deviation of isogauss surfaces from
sphericity is very large, which indicates that the application of a non-spherical source
surface (rather than a spherical source surface) to coronal magnetic-field models based

on real data will produce significant changes.

The above solar rotations occurred during the Skylab era (rotation 1602 in June
1973; rotation 1609 in December 1973). As a result there is a wealth of information
available for these two rotations, and we can compare details of the shapes of the cor-
responding isogauss surfaces with other observed features (cf. various references in
Zirker, 1977). The basic shape of the isogauss surface for rotation 1602 resembles the
shape of the isogauss surface for the dipole model, with obvious "bulges" in the polar
regions. Superimposed on this basic dipole shape are various structures in the equatorial
region associated with active regions, particularly between longitudes of 0° and 180°.
This is the same general pattern that was inferred from observations of coronal holes and
interplanetary streams. The isogauss surface for rotation 1609 displays a considerably
different appearance; its shape might best be described as that of a tilted dipole. Again,
this basic shape was inferred from interplanetary and coronal observations. (See
Hundhausen, 1977, for a more detailed discussion of the coronal and interplanetary
phenomenology during this time period.) Viewing each isogauss surface in more detail,
we note that there is a one-to-one correspondence between "bulges" in the surface and
coronal holes. For example, the bulge centered at about 10° longitude and 20°S latitude

in rotation 1602 is coronal hole number 1. All of these considerations lead us to conclude
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that the use of a non-spherical source surface would lead to a very significant

improvement in current coronal field models.

The failure of a source surface to be everywhere convex entails no obvious
impediment to the interior solution, i.e., to the minimization of ¢ in (3). However, this
failure will definitely impact our construction of the exterior solution, since outward
normals from different points on the source surface will necessarily intersect somewhere
outside the source surface. Such intersections suggest the formation of shocks in the
outer corona and perhaps correspond to features that are actually present in space. If
confirmed by observation or by MHD theory, the presence of such shocks would be of
interest in the context of heating the solar wind (C. F. Kennel, personal communication,
1978). However, since we do not know the fundamental relationship (if any) between
source-surface constructions and MHD, it would be premgture to conclude that
indentations in our source surface correspond to shock-producing indentations in a
properly computed MHD critical surface (C. F. Kennel, personal communication, 1978).
The effect of indentations in an isogauss source surface for the present work is to
complicate the construction of our exterior solution, probably by requiring a hydrodyna-
mical treatment of solar-wind expansion from the source surface. Such indentations
could perhaps be removed by smoothing without introducing a major error in the field
configuration. We do not propose an arbitrary smoothing of the source surface as such.
Rather, we contemplate diminishing the spatial resolution with which B_is described at
r=ry (ej;, by averaging the observedg‘over a larger-than-necessary area of the solar
surface) so as to reduce the influence of the higher-order spherical harmonics in the

vicinity of r =r_. Such a procedure would tend to preserve the gross shape of the source

s
surface while removing the bothersome indentations.




S R BN e SR e e NS

E M& Froe FBLarA ~ LA

i

3 5. DISCUSSION

B . ,

bt It appears that the general features of an MHD solution for the solar corona can
* | be simulated quite well by use of an appropriately chosen non-spherical source surface.

Moreover, the non-spherical source surface seems to generate a more satisfactory

interplanetary g‘field than do the more conventional spherical source surfaces of
s | Schatten et al. (1969) and Altschuler and Newkirk (1969). We take this opportunity to
discuss some of the more subtle issues that may arise in the course of implementing our

model based on a non-spherical source surface.

One might ask why we have considered only the internal sources of~§“in specifying
the isogauss source surface, when it would have seemed more self-consistent .tO select an
isogauss of the ultimate field configuration. We can respond to this question in several
ways. First, we note that our results for the dipole case are very satisfactory, when
compared with the MHD solution of Pneuman and Kopp (1971a,b). Second, we remark
tﬁat the search for a self-consistent isogauss source surface would have entailed an
infinite series of iterations that would have defeated our objective of defining an easily
implemented procedure for calculating& Third, we remark that the minimization of o
in (3) produces a trajectory of extremely small (ideally vanishing) total B on the source
surface, i_.&, at the field cusp (see Figures 1-2) that constitutes the inner edge of the
neutral sheet. Therefore, the self-consistent isogauss source surface (if definable at all)

E - is certainly not everywhere convex, as would be required for the construction of our

exterior solution.
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Our source surface bears a morphological and conceptual resemblance to the self-
consistent Alfvenic surface calculated in MHD by Pneuman and Kopp (1971a,b). Their
Alfvénic surface (at which pu2/2 = B2 /8w for a solar wind of mass density p and bulk
velocity 3), however, was characterized by an equatorial indentation, and so was not a
convex surface. Our source surface rs(e) is located sunward of the MHD Alfvénic
surface r A(6) at all latitudes, i.e., is completely enclosed by the Alfvenic surface of
Pneuman and Kopp (1971a,b). It is difficult to assess the importance of the inequality
rs(e) <P A(O ), since, as was stated above, we do not know the fundamental
mathematical relationship (if any) between source-surface constructions and MHD. The
computational advantage of our source-surface approach is that we can construct coronal
and interplanetarygfields from the solar anfield without having to calculate the solar-
wind properties simultaneously. However, we note that Pneuman and Kopp (1971a,b)
have defined r A(e) without regard for the thermal energy density contained in the
plasma. A differently defined r A( 6) might have had greater significance in MHD and

might also have more nearly approximated our rs( o).

One evident use of the results obtained above for the dipole case is the
construction of a model solar wind in a presecribed R-field geometry. This has been done
in exospheric theory (Lemaire and Scherer, 1971) for a prescribed radial magnetic field
and in fluid theory (Durney and Pneuman, 1975) for a presecribed non-radial magnetic
field, but with solar rotation neglected. It would be highly relevant to develop model
solar winds in both exospheric theory and fluid theory for the present model field, which
might be viewed as a prototype of reality. The present model field might also serve as a

prototype for the description of cosmic-ray transport within the heliosphere. Jokipii et

gl_. (1977) have considered the effects of gradient-curvature and other adiabatic drifts
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(e.g., Northrop, 1963) on cosmie-ray transport in a model field that, unlike (31), closely

resembles the present one at large distances from the sun.

We can make a qualitative comparison between interplanetary g:field observations
and our results shown in Figure 6 by recognizing that our planar neutral sheet
corresponds in nature to a neutral sheet that is warped about +15° with respect to the
heliographic equator (Schulz, 1973; Levy, 1976; Smith et al.,, 1978). Thus, we should
interpret A =[(w/2)-6! in Figure 6 as the angular distance of the observer from the
warped neutral sheet at r ~ 1 AU and heliographic longitude ¢, and we should interpret

=0 as the crossing of a "sector boundary" of the sort deseribed by Wilcox and Ness

(1965). In a superposed-epoch analysis of their observations of B, Wilcox and Ness (1965)

° found a relative minimum in B just past the middle of each sector (_i;e_., near the
maximum attainable \) and relative maxima in B just before and just after the crossing

of a sector boundary. A maximum attainable X\ of 15° would correspond to

cos © = 0.26 in Figure 6. Thus, properly interpreted, the observations of B are in good
qualitative agreement with Figure 6. The maxima in B observed by Wilcox and Ness

(1965) were, however, neither as pronounced nor as near the "sector boundaries" nor as
symmetrical about the minimum in B as one would expect from Figure 6. Thus, the non-

spherical source surface specified by (4) appears to account for the qualitative form of

magnetic-field structure observed within an interplanetary sector, but the present

approach must be applied to a more realistic model of the solar E“field before any

quantitative comparisons can be made.

Similar superposed-epoch analyses reported by Wilcox (1968) suggest nearly a
doubling of the solar-wind veloecity (from u ~ 250 km/sec to u ~ 450 km/sec) between the
sector boundaries (A =0) and the middle of a sector (A = 15° by the above inter-

pretation). This would correspond to a latitudinal gradient ~10-15 km/sec per degree of
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equivalent heliomagnetic latitude and is in good agreement with the results of Rhodes
and Smith (1976), who infer a gradient ~10~15 km/sec per degree of heliographic latitude
from spacecraft observations made in and near the ecliptic plane. The present
interpretation suggests that numerical uncertainties and scatter in the analysis of such
spacecraft data could be reduced greatly by taking account of the observer's position
within a sector, i.e., of the inferred angular distance between the observer and the

warped neutral sheet.

In summary, we consider the use of a non-spherical (isogaussian) source surface to
be very promising as a method of modelling the coronal and interplanetary B field. We
have demonstrated the utility of the method by constructing the prototype of a model
field, i.e., that corresponding to an internal dipole surrounded by the source surface
specified by (4). We anticipate the application of our method to more realistic
representations of the solar&field, but we recognize that considerable work remains to

be done before this goal is fully achieved.
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THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of The Aerospace Corporation is conducting

e

experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
] satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel- 7

opments is vital to the accomplishment of tasks related to these problems. The

laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos- 3
pheric optics, chemical reactions in polluted atmospheres, chemical reactions 3
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-

. sensitive materials and sensors, high precision laser ranging, and the appli-
Y cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lascrs, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics tc stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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